首页> 外文OA文献 >Nodule Detection In A Lung Region That's Segmented With Using Genetic Cellular Neural Networks And 3D Template Matching With Fuzzy Rule Based Thresholding
【2h】

Nodule Detection In A Lung Region That's Segmented With Using Genetic Cellular Neural Networks And 3D Template Matching With Fuzzy Rule Based Thresholding

机译:使用遗传细胞神经网络和3D模板匹配与基于模糊规则的阈值分割对肺区域中的结节检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Objective: The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. \ud\udMaterials and Methods: Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. \ud\udResults: The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. \ud\udConclusion: Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computeraided detection of lung nodules.
机译:目的:本研究的目的是利用结节的3D外观特征(将自己与血管区分开),开发一种在连续切片CT图像中自动检测肺结节的新方法。 \ ud \ ud材料和方法:通过四个步骤检测到肺结节。首先,为了减少感兴趣区域(ROI)的数量和计算时间,使用遗传细胞神经网络(G-CNN)对CT的肺区域进行了分割。然后,使用8个方向搜索为每个肺区域指定ROI。 +1或-1值分配给每个体素。通过组合所有二维(2D)ROI图像获得3D ROI图像。创建了3D模板以在3D ROI图像上找到结节状结构。 3D ROI图像与建议模板的卷积会增强与模板相似的形状,并削弱其他形状。最后,基于模糊规则的阈值被应用,并找到投资回报率。为了测试系统的效率,我们从肺图像数据库协会(LIDC)数据集中使用了16个案例,共425个切片。 \ ud \ ud结果:当结节厚度大于或等于5.625 mm时,计算机辅助诊断(CAD)系统在每个案例中具有13.375 FP的灵敏度达到100%。 \ ud \ ud结论:我们的结果表明我们算法的检测性能令人满意,这可能会大大改善计算机辅助检测肺结节的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号